
Bourns®

- 8 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
	TIC226D		400		
Repetitive peak off-state voltage (see Note 1)	TIC226M	V	600	V	
	TIC226S	V _{DRM}	700	v	
	TIC226N		800		
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note 2)			I _{T(RMS)} 8		
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			70	А	
Peak gate current			±1	А	
Peak gate power dissipation at (or below) 85°C case temperature (pulse width \leq 200 μ s)			2.2	W	
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)			0.9	W	
Operating case temperature range			-40 to +110	°C	
Storage temperature range			-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds			230	°C	

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

 This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 320 mA/°C.

- 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	$V_D = rated V_{DRM}$	$I_{G} = 0$	T _C = 110°C			±2	mA
I _{GT}		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		6	50	mA
	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-12	-50	
	current	V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-10	-50	
		$V_{supply} = -12 V^{+}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		25		
V _{GT}		V _{supply} = +12 V†	R _L = 10 Ω	t _{p(g)} > 20 μs		0.7	2	
	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	V
	voltage	V _{supply} = -12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.8	-2	
		$V_{supply} = -12 V^{+}$	$R_L = 10 \ \Omega$	t _{p(g)} > 20 μs		0.9	2	
V _T	On-state voltage	$I_T = \pm 12 \text{ A}$	l _G = 50 mA	(see Note 5)		±1.5	±2.1	V

† All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

APRIL 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

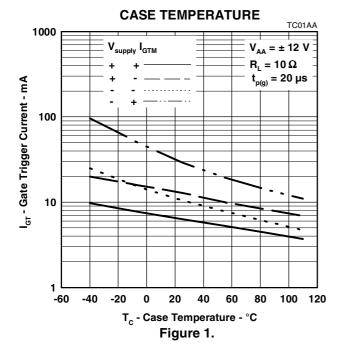
electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _H	Holding current	$V_{supply} = +12 V^{\dagger}$ $V_{supply} = -12 V^{\dagger}$	I _G = 0 I _G = 0	Init' I _{TM} = 100 mA Init' I _{TM} = -100 mA		10 -6	30 -30	mA
IL	Latching current	V _{supply} = +12 V† V _{supply} = -12 V†	(see Note 6)				50 -50	mA
dv/dt	Critical rate of rise of off-state voltage	V_{DRM} = Rated V_{DRM}	I _G = 0	T _C = 110°C		±100		V/µs
dv/dt _(c)	Critical rise of commu- tation voltage	V_{DRM} = Rated V_{DRM}	$I_{\text{TRM}} = \pm 12 \text{ A}$	T _C = 85°C (see figure 7)	±5			V/µs

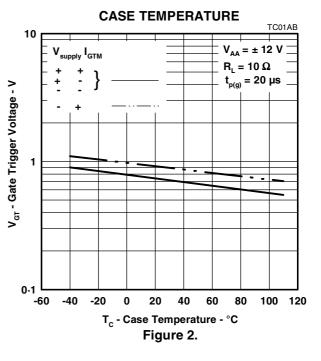
† All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

6. The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \Omega$, $t_{p(g)} = 20 \mu s$, $t_r = \le 15 ns$, f = 1 kHz.

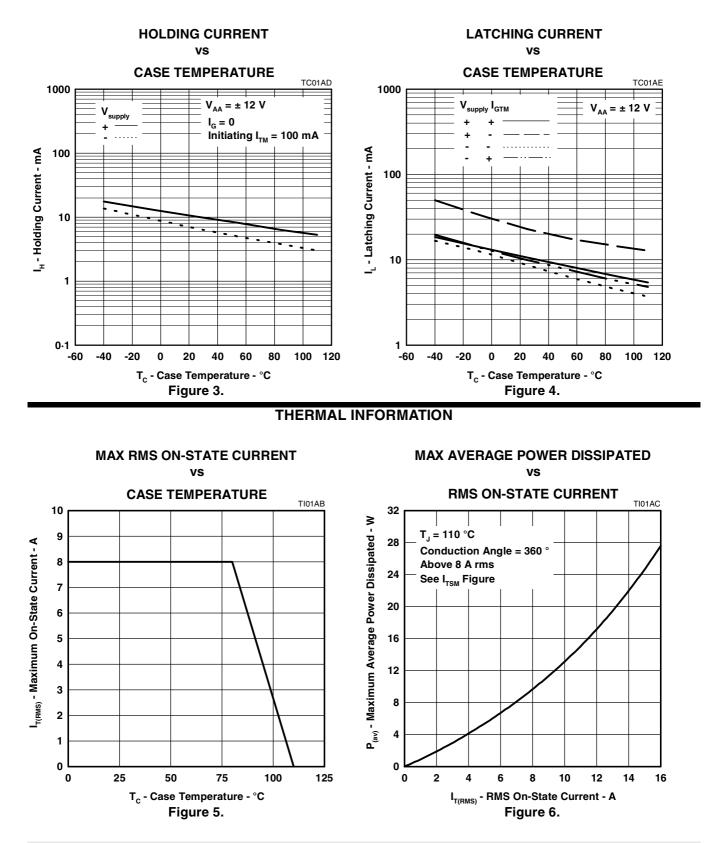

thermal characteristics

PARAMETER			ТҮР	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.8	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W


TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT

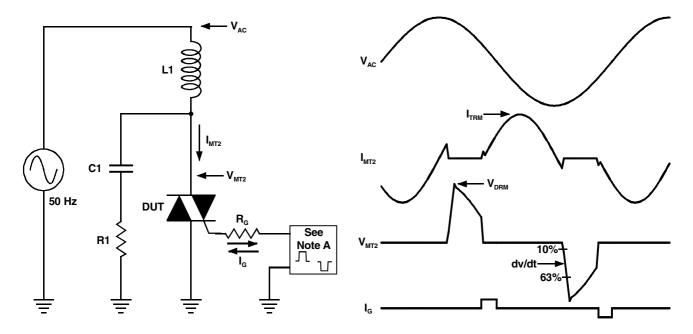
vs



GATE TRIGGER VOLTAGE

PRODUCT INFORMATION

TYPICAL CHARACTERISTICS


PRODUCT INFORMATION

APRIL 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

BOURNS®

PARAMETER MEASUREMENT INFORMATION

NOTE A: The gate-current pulse is furnished by a trigger circuit which presents essentially an open circuit between pulses. The pulse is timed so that the off-state-voltage duration is approximately 800 µs.

PMC2AA

